Up: vita
Previous: - 3 -
Next: - 5 -

4
6. Optimal stopping in the stock market (with J. L. Snell). Ann. Probability 2 (1974), 1-13.
7. A maximal coupling for Markov chains.
Z. Wahrscheinlichkeitstheorie verw. Gebiete 31 (1975), 95-106.
8. Ergodic theorems for graph interactions. Adv. Appl. Prob. 7 (1975), 179-194.
9. Uniform coupling of nonhomogeneous Markov chains. J. Appl. Prob. 12 (1975), 753-762.
10. Coupling methods for Markov processes. Studies in Probability and Ergodic Theory,
ed. Rota. Academic Press, New York, 1978, 1-43.
11. Partial coupling and loss of memory for Markov chains.
Ann. Probability 4 (1976), 850-858.
12. On the uniqueness of certain interacting particle systems (with L.Gray).
Z. Wahrscheinlichkeitstheorie verw. Gebiete 35 (1976), 75-86.
13. Introduction to random fields. Chapter 12 in Denumerable Markov Chains, 2nd edition,
by Kemeny, Snell and Knapp. Springer, New York, 1976.
14. On p-fuctions with exponential start. J. London Math. Soc.2 14 (1976) 445-450.
15. An ergodic theorem for a class of spin systems.
Ann. Inst. Henri Poincare B, 13 (1977), 141-157.
16. On the uniqueness and nonuniqueness of proximity processes (with L. Gray).
Ann. Probability 5 (1977), 678-692.
17. Limit theorems for nonergodic set-valued Markov processes.
Ann. Probability 6 (1978), 379-387.
18. Annihilating and coalescing random walks on Zd.
Z. Wahrscheinlichkeitstheorie verw. Gebiete 46 (1978), 55-65.
19. Renormalizing the 3-dimensional voter model (with M. Bramson).
Ann. Probability 7 (1979), 418-432.
20. Pointwise ergodicity of the basic contact process. Ann. Probability 7 (1979), 139-142.
21. Clustering and dispersion rates for some interacting particles systems on Z1
(with M. Bramson). Ann. Probability 8 (1980), 183-213.
22. A note on the extinction rates of some birth-death processes
(with M. Bramson). J. Applied Probability 16 (1979), 897-902.
23. Additive and Cancellative Interacting Particle Systems.
Springer Lecture Notes in Mathematics 724 (1979).